Nick A, Noah, Nick D, Angel, Emma, Dominic
Food for Thought
How do you decide what degree a polynomial regression should be in order to best fit the data?
What are some performance measurements for polynomial regression algorithms?
How can you improve a machine learning model that is prone to overfitting?

What is a Learning Curve?
e A graph that compares the performance of a model on training and testing data over a varying number of training instances
e A useful tool that evaluates model performance; shows

o} == T .100
whether or not a model is suffering from bias/variance High variance ot _(a()r:’dtr:;{fg + b1002
. . % By e S) o
Types of Learning Curves: 5 \\\\\; £
e Bad Learning Curve (High Variance): There is a large ga o T~
g ) ge gap o2 o
between errors
e Bad Learning Curve (High Bias): Training and testing errors ///;:_L:)df' size
converge and are high T o g

M (training set size)

[
Ideal Learning Curve: i ‘ I . =
* . T A mode.l that generalizes to neVY d.ata If a learning algorithm is suffering =
and testing and training learning curves converge at similar o, high variance, getting more
values training data is likely to help. <= M
Code
" : hg(x) = 0p + 61
import numpy as np High bias N SE—
N g
from sklearn.preprocessing import PolynomialFeatures g J_\\\\\fi\‘—‘__—_‘ii =..(8) =
from sklearn.linear_model import LinearRegression \é@w P e e
from sklearn.metrics import mean_squared_error Q“‘I\ // Sx=n () ‘ _
from sklearn.model_selection import train_test_split , A see
m V(training set size) ’ g
import matplotlib.pyplot as plt ) E
m = 100
X = 6 * np.random.rand(m, 1) - 3 size
y = 0.5 % X*x%2 + X + 2 + np.random.randn(m, 1)
poly_features = PolynomialFeatures(degree=2, include_bias= )

X_poly = poly_features.fit_transform(X)
poly_reg = LinearRegression()
poly_reg.fit(X_poly, y)

def plot_learning_curves(model, X, y):
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
train_errors, val_errors = [], []
for m in range(1, len(X_train)):
model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train_predict, y_train[:m]))
val_errors.append(mean_squared_error(y_val_predict, y_val))
plt.plot(np.sqrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")

lin_reg = LinearRegression()
plot_learning_curves(lin_reg, X, vy)
plot_learning_curves(poly_reg, X, Yy)

Resources

Learning Curves in Machine Learning: https:/www.dataquest.io/blog/learning-curves-machine-learning/
Learning Curves in Machine Learning: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_452


https://www.dataquest.io/blog/learning-curves-machine-learning/
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_452

