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Food for Thought
How do you decide what degree a polynomial regression should be in order to best fit the data?
What are some performance measurements for polynomial regression algorithms?
How can you improve a machine learning model that is prone to overfitting?

What is a Learning Curve?
e A graph that compares the performance of a model on training and testing data over a varying number of training instances
e A useful tool that evaluates model performance; shows
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import matplotlib.pyplot as plt ) E
m = 100
X = 6 * np.random.rand(m, 1) - 3 size
y = 0.5 % X*x%2 + X + 2 + np.random.randn(m, 1)
poly_features = PolynomialFeatures(degree=2, include_bias= )

X_poly = poly_features.fit_transform(X)
poly_reg = LinearRegression()
poly_reg.fit(X_poly, y)

def plot_learning_curves(model, X, y):
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
train_errors, val_errors = [], []
for m in range(1, len(X_train)):
model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train_predict, y_train[:m]))
val_errors.append(mean_squared_error(y_val_predict, y_val))
plt.plot(np.sqrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")

lin_reg = LinearRegression()
plot_learning_curves(lin_reg, X, vy)
plot_learning_curves(poly_reg, X, Yy)

Resources

Learning Curves in Machine Learning: https:/www.dataquest.io/blog/learning-curves-machine-learning/
Learning Curves in Machine Learning: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_452
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