Dominic Pancella
Food for Thought
Is it possible to efficiently train machine learning algorithms on huge datasets?
How can you implement a complex neural network using TensorFlow?
What high-level APIs exist that work with the architecture of TensorFlow?
What operating systems and programming languages are compatible with TensorFlow?
How do you use TensorFlow and TensorBoard to create data visualizations?

Background

The TensorFlow library, developed by the Google Brain team, is a powerful resource for extremely large-scale
computation and machine learning applications (on the order of billions of instances and millions of features).
On the front end, a user can create graphs of computations to perform, and on the back end, TensorFlow will
turn those graphs into optimized C++ operations. TensorFlow supports parallel processing and distributed
computing to run on multiple processors or a network of servers, and it can run on Windows, Linux, and
macOS. The name TensorFlow derives from the nature of inputs and outputs to its operations, which are
multidimensional arrays called tensors (in the Python API, tensors are represented as NumPy ndarrays).

Installing TensorFlow
If you have a normal installation of Python, you can use pip to install TensorFlow, like so:

S pip install --upgrade tensorflow
If you are using a virtualenv environment, you have to activate it first, then use the pip command as above:

S cd SML_PATH #ML_PATH is your machine learning working directory
§ source env\bin\activate

If you are using Anaconda, you can create and activate a TensorFlow environment in an Anaconda command
prompt (or a terminal window if your OS is macOS or Linux):

$ conda create -n tf tensorflow #tf stands in for what you want to name your environment
§ conda activate tf

Creating a Computation Graph

Now that everything is installed and activated, you can get started by simply creating a blank Python file and
writing some code similar to the following few lines. I've created two TensorFlow Variables called x and y,
given them values of 2 and 5, respectively, and computed the value of a function f which equals 3x* - 4xy + y*.

tensorflow tf
x = tf.Variable(2, name="x")
y = tf.Variable(5, name="y")
f = 3*x*X - 4xx*y + yxy

Running a Graph in a Session

While the above code might look like it does some variable creation, initialization, and evaluation, you’ll need
to run a TensorFlow session in order to actually evaluate the result of a computation graph. You can do this in
the same program as you wrote the above code in.

init = tf.global_variables_initializer()
tf.Session() sess:

Dominic Pancella
init.run()
result = f.eval()
print(result)

Managing Multiple Graphs

By default, every node you create using TensorFlow will be added to the same (default) graph. If you want to
add a node to a different graph, you can create a Graph, set it as the default, and make the changes you want. If
you want to erase all nodes from a graph, you can use the reset_default_graph function.

x1 = tf.Variable(19.92)
my_graph1l = tf.Graph()
my_graph1.as_default():
x2 = tf.Variable(-34.119)
tf.reset_default_graph() #resets the graph containing the x1 node

Linear Regression (Normal Equation)

I’m going to use TensorFlow to train three linear regression algorithms on the California housing data. The
first one is more of a test computation than a machine learning algorithm because it makes use of the closed
form of the linear regression model—the normal equation.

numpy np
sklearn.datasets fetch_california_housing

housing = fetch_california_housing()

m, n = housing.data.shape

housing_bias = np.c_[np.ones((m,1)), housing.data]

X = tf.constant(housing_bias, dtype=tf.float32, name="X")

y = tf.constant(housing.target.reshape(-1,1), dtype=tf.float32, name="y")
XT = tf.transpose(X)

theta = tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)

tf.Session() sess:
theta_value = theta.eval()

Linear Regression (Batch Gradient Descent)

The next linear regression method I am going to implement, and really the first test of TensorFlow’s
processing capabilities, is a batch gradient descent algorithm. It is important to note that using any gradient
descent algorithm requires that all input vectors be on the same scale, so I will first scale the data using the
StandardScaler class from sklearn.

sklearn.preprocessing StandardScaler

scaler = StandardScaler()
scaled_housing_bias = scaler.fit_transform(housing_bias)

n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1,1), dtype=tf.float32, name="y")
theta = tf.variable(tf.random_uniform([n + 1, 1], -1.08, 1.8), name="theta")

Dominic Pancella
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred -y
mse = tf.reduce_mean(tf.square(error), name="mse"
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
if epoch % 50 == 0:
print("Epoch", epoch, "MSE =", mse.eval())
sess.run(training_op)
best_theta = theta.eval()

Linear Regression (Mini-batch Gradient Descent)

To implement mini-batch gradient descent, we need to make a few changes to the code we have for batch
gradient descent. Specifically, we need to replace the declarations of X and y with placeholders, define the
batch size, create a function to fetch each mini-batch, and use the feed_dict parameter to get the values of X
and y whenever we need them during evaluation.

#replacing the declarations of X and y
X = tf.placeholder(tf.float32, shape=(, h+ 1), name="X")
y = tf.placeholder(tf.float32, shape=(, 1), name="y")

#added somewhere before the declaration of init and the execution section
batch_size = 100
n_batches = int(np.ceil(m / batch_size))

#the new execution section (the declaration of init is omitted here, but still necessary)
def fetch_batch(epoch, batch_index, batch_size):

np.random.seed(epoch * n_batches + batch_index)

indices = np.random.randint(m, size=batch_size)

X_batch scaled_housing_bias[indices]

y_batch = housing.target.reshape(-1, 1)[indices]

return X_batch, y_batch

with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for batch in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
best_theta = theta.eval()

Resources

This code is adapted from chapter 9 of the textbook and the corresponding Jupyter notebook, which can be
found here:

https://nbviewer.jupvter.org/github/agseron/handson-ml/blob/master/09 up and running with tensorflow.ipyn
b

TensorFlow tutorials and guide: https://www.tensorflow.org/tutorials | https://www.tensorflow.org/guide

https://nbviewer.jupyter.org/github/ageron/handson-ml/blob/master/09_up_and_running_with_tensorflow.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml/blob/master/09_up_and_running_with_tensorflow.ipynb
https://www.tensorflow.org/tutorials
https://www.tensorflow.org/guide

Dominic Pancella

Creating visualizations with TensorBoard: https://www.tensorflow.org/tensorboard/

https://www.tensorflow.org/tensorboard/

