Lesson 02

CSC140 Foundations of Computer Science

13 February 2020

```
# A program that draws cardoid curves.
\# Margaret Hamilton
\# CSC140 Foundations of Computer Science
# 13 February 2020
import math
import turtle
# A larger number of steps will give
\# a smoother curve.
# TO-DO: Experiment with smaler and larger values for STEPS.
STEPS = 64
\# \ Specify \ the \ width \ and \ height \ of \ the \ window.
WIDTH = 512
HEIGHT = 512
def draw_curve( pen, scale_factor, rotation_angle ):
    # Put the pen at the origin.
    pen.up()
    pen.goto(0, 0)
    pen.down()
    # This loop takes us around a circle in equal-sized steps.
    for i in range(STEPS):
        # What fraction of the distance around the circle?
        fraction = i / STEPS
        # Compute the angle in radians.
        angle = fraction * 2 * math.pi
        # Here is the formula for a cardoid curve.
        # The formula is expressed in polar coordinates.
        \# TO-DO: Experiment with formulas for other kinds of curves.
        r = scale_factor * (1 - math.cos(angle))
```

```
# Produce Cartesian coordinates from
       \# the polar coordinates
       x = r * math.cos(angle)
       y = r * math.sin(angle)
       # Construct the rotation matrix.
        cosine = math.cos( rotation_angle )
        sine = math.sin( rotation_angle )
       # The matrix has 4 elements.
       m00 = cosine
       m01 = -\sin e
       m10 = sine
       m11 = cosine
       # Apply the rotation matrix.
       # (Rotate the point about the origin.)
        x_rotated = m00 * x + m01 * y
        y_rotated = m10 * x + m11 * y
       # Draw the next segment of the curve
        pen.goto(x_rotated, y_rotated)
   # end of draw_curve()
if -name = '-main':
   window = turtle.Screen()
   # TO-DO: Experiment with other background colors.
   window.bgcolor("Sea_Green")
   window.screensize(WIDTH, HEIGHT)
   pen = turtle. Turtle()
   # TO-D0: Experiment with other pen widths.
   pen.width(8)
   # TO-DO: Experiment with other colors for the curve.
   pen.color( "goldenrod" )
   # A value of 128 for the parameter 'a' yields a
   # nice picture when the width and height of the
   \# picture is 512.
   scale_factor = int( input( "Enter_a_positive_integer_value:_" ) )
   # TO-DO: Experiment with different numbers of copies of the curve.
   number_of_copies = 3
   for i in range( number_of_copies ):
```

```
rotation_angle = i * math.pi/number_of_copies
draw_curve( pen, scale_factor, rotation_angle )

# TO-DO: Try adding another loop. Maybe different sizes
# or colors for these additional curves?

# The program ends when the user moves the mouse to
# put the cursor inside the picture and then clicks
# the left button on the mouse.
window.exitonclick()

# end of main function
```