
Graded Exercise 1

CSC140 Foundations of Computer Science

21 February 2020

In this exercise you will define 4 functions and use them to draw a picture:

• weighted avg nums()

• weighted avg points()

• weighted avg of avgs()

• weighted avg of avgs of avgs()

The definition of each successive function will build upon definitions of previous
functions.

You will also practice using tuples. A tuple is a compound datatype. In this
exercise, you will use tuples to represent points in the plane.

Write a Python program. Within that program do the following:

1. Define a function weighted avg nums(a, b, t) that computes the weighted
average of two numbers a and b with a weight t, where 0.0 ≤ t ≤ 1.0.

weighted avg nums = (1− t) · a + t · b

This function returns to its caller a number.

Hint:

Here’s how to define and call a function:

1

def ar i thmet ic mean (a , b) :
r e s u l t = (a + b)/2
return r e s u l t

i f name == ” main ” :
m = 2
n = 4
average = arithmet ic mean (m, n)
print (f ” average = { average : 2 d}”)

Examples:

• weighted avg nums(12, 20, 0.25) returns 14

• weighted avg nums(12, 20, 0.50) returns 16

• weighted avg nums(12, 20, 0.75) returns 18

2. Define a function weighted avg points(p0, p1, t) that computes the weighted
average of two points p0 and p1 with a weight t, where 0.0 ≤ t ≤ 1.0.

Each point is a tuple:

p0 = (x0, y0)

p1 = (x1, y1)

Each coordinate of the weighted average of two points is the weighted
average of the corresponding coordinates of the two points:

px = weighted avg nums(x0, x1, t)

= (1− t) · x0 + t · x1

py = weighted avg nums(y0, y1, t)

= (1− t) · y0 + t · y1
weighted avg points(p0, p1, t) = (px, py)

Hints:

• Your function should include statements that correspond to the first
and third equations shown above. Your function should not include
expressions that correspond to those on the second and fourth lines.
The arithmetic takes place inside weighted avg nums(), the function
that weighted avg points(), and not in weighted avg points() itself.

• Here is one way to create a tuple and get values out of it:

p = (3 , 4) # crea t e a t u p l e and g i v e i t a name
x = p [0] # ass i gn f i r s t e lement o f p to x
y = p [1] # ass i gn second element o f p to y

2

• Here is another way to get values out of a tuple:

p = (3 , 4) # crea t e a t u p l e and g i v e i t a name
x , y = p # copy 1 s t e lement o f p in t o x

and copy 2nd element in t o y

• Here is a definition of a function whose parameters are tuples and a
call to that function:

import math

def e u c l i d e a n d i s t a n c e (p0 , p1) :
x0 , y0 = p0
x1 , y1 = p1

d e l t a x = x1 − x0
d e l t a y = y1 − y0

dx sqr = d e l t a x ∗ d e l t a x
dy sqr = d e l t a y ∗ d e l t a y

r e s u l t = math . s q r t (dx sqr + dy sqr)
return r e s u l t

i f name == ” main ” :
p0 = (0 , 0)
p1 = (3 , 4)

d i s t anc e = e u c l i d e a n d i s t a n c e (p0 , p1)

print (f ” d i s t ance = { d i s t anc e : 8 . 4 f }”)

This function returns to its caller a tuple that contains the x and y coor-
dinates of a new point.

For example, the weighted average of the points (2, 2) and (4, 4) with
weight t = 0.5 is (3, 3).

3. Define a function weighted avg of avgs(p0, p1‘, p2, t) that computes
the weighted average of two weighted averages of points.

The first weighted average is the weighted average of p0 and p1 with weight
t.

The second weighted average is the weighted average of p1 and p2 with
weight t.

This function computes its result by calling weighted avg points() three
times.

3

• the first call computes the weighted average of p0 and p1

• the second call computes the weighted average of p1 and p2

• the third call computes the weighted average of the points returned
by the first two calls

This function returns to its caller a tuple that contains the x and y coor-
dinates of a new point.

Hint:

Here is an example of a program that defines two functions. The definition
of the second function makes use of the first function.

MAXIMUM SEQUENCE LENGTH = 1024

def hai l s tone number (n) :
i f n % 2 == 0 :

return n // 2
else :

return 3 ∗ n + 1

def s equence l eng th (n) :
count = 0
while n != 1 and count < MAXIMUM SEQUENCE LENGTH:

n = hai l s tone number (n)
count += 1

return count

i f name == ” main ” :
seed = int (input (” Enter a p o s i t i v e i n t e g e r : ”))
l ength = sequence l eng th (seed)
print (f ” Sequence l ength = { l ength : 4 d}”)

4. Define a function weighted avg of avgs of avgs(p0, p1, p2, p3, t that
computes the weighted average of the weighted averages of weighted av-
erages of points.

This function will compute its result by calling weighted avg of avgs()
twice.

• the first call will the function with the parameters (p0, p1, p2, t)

• the second call will the function with the parameters (p1, p2, p3, t)

Then this function will call weighted avg of points() to compute the av-
erages of the points returned by the two calls to weighted avg of avgs().

This function will return to its caller a tuple that contains the x and y
coordinates of a new point.

4

5. Use Turtle graphics to create a window.

6. Create tuples that hold the coordinates of four points in the window and
assigns these tuple values to variables p0, p1, p2, p3.

7. Call weighted avg of avgs of avgs() repeatedly with p0, p1, p2, p3 and
values of t that begin with t = 0.0 and increase in equal increments to
t = 1.0.

Hint:

Here is a program that calls a function repeatedly.

import math

STEPS = 12

i f name == ” main ” :
for i in range (STEPS) :

t = i / (STEPS − 1)
s q r t = math . s q r t (t)
print (f ” square root ({ t : 6 . 4 f }) = { s q r t : 6 . 4 f }”)

8. Plot the points p0, p1, p2, p3 in one color.

Hint:

Here is a program that plots four points.

import t u r t l e

i f name == ” main ” :
window = t u r t l e . Screen ()
window . colormode (255)
window . s c r e e n s i z e (512 , 512)

window . bgco lo r (” co rn f l owe rb lue ”)

pen= t u r t l e . Turt le ()
pen . h i d e t u r t l e ()

pen . up ()
pen . goto (128 , 128)
pen . dot (12 , (128 , 0 , 112))

pen . goto (−128, 128)
pen . dot (12 , (128 , 0 , 112))

pen . goto (−128, −128)
pen . dot (12 , (128 , 0 , 112))

5

pen . goto (128 , −128)
pen . dot (12 , (128 , 0 , 112))

window . e x i t o n c l i c k ()

9. Plot the computed points in another color.

10. Can you connect the computed points with line segments?

6

