
Smart Smartphone Development: iOS versus Android
Mark H. Goadrich

Mathematics and Computer Science
Centenary College of Louisiana

Shreveport, LA 71104
mgoadric@centenary.edu

Michael P. Rogers
Computer Science Information Systems

Northwest Missouri State University
Maryville, MO 64468

Michael@nwmissouri.edu

ABSTRACT
In a remarkably short timeframe, developing apps for
smartphones has gone from an arcane curiosity to an essential
skill set. Employers are scrambling to find developers capable of
transforming their ideas into apps. Educators interested in filling
that void are likewise trying to keep up, and face difficult
decisions in designing a meaningful course. There are a plethora
of development platforms, but two stand out because of their
popularity and divergent approaches — Apple's iOS, and Google's
Android. In this paper, we will compare the two, and address the
question: which should faculty teach?

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Computer and
Information Science Education – computer science education

General Terms
Languages, Performance, Standardization

Keywords
iPhone, Android, iOS, Xcode, Eclipse, Objective-C, Java,
Smartphones, Mobile Devices, apps

1. INTRODUCTION
Driven by industry needs, student interest, and the relative
maturation of the technologies, more faculty are now in a position
to consider including modules or even offer full courses in mobile
development [10, 12-15, 22, 23, 26]. There are a plethora of
platform possibilities — Apple's iOS, Google's Android,
Microsoft's Windows Mobile, Nokia's Symbian OS, RIM's
BlackBerry, etc. — and while a survey course might be intriguing,
the logistics would be daunting, and the failure to develop
expertise on any single platform would likely prove unsatisfying.
In short, a choice must be made.
A detailed examination of so many platforms is impractical here,
so to assist faculty in their most critical first decision, the authors,
too, have had to make a choice: we have elected to contrast
development on two of the leading platforms among college
students [7], Apple's iOS and Google's Android. We will
compare their hardware/operating system requirements, Software

Development Kits (tools, frameworks, languages, documentation),
instructor resources, and finish up by describing the development
of a "Hello, World!" app on both platforms.

2. HARDWARE/OS REQUIREMENTS
2.1 iOS
iOS development requires Macintosh computers running Mac OS
X 10.6 (Snow Leopard). Since apps tend to be relatively small in
size, and run on much slower processors, the computers
themselves need not be particularly powerful.

Realistically, hardware may be one of the most irksome
impediments to iOS development: while Macintoshes are
common on campus, they are less so in Computer Science
departments. One solution is to network with colleagues in other
departments, or failing that, purchase some low end (but perfectly
adequate) Mac Minis, so named for both their dimensions and
price.

iOS development can almost be done entirely on the computer, as
the simulator that is bundled with the iOS SDK is perfectly
acceptable in most situations. The only difficulties arise in
usability testing —using the mouse with a simulated touch screen
feels unnatural — and apps that require access to particular
hardware (GPS, Camera, Accelerometer, Magnetometer) cannot
be realistically tested on the simulator. For accurate testing, an
actual iPhone, iPad, or iPod Touch (an "iFamily device") is
required.

Outfitting an entire class with an iFamily device could be
expensive. While an iPhone 3Gs can be purchased for $99, in the
United States a minimum 2-year AT&T contract is required,
pushing the true cost to over $1000. A more palatable option
might be an iPad ($499) or iPod Touch ($199). These lack some
of the iPhone's more interesting amenities (built-in GPS,
accelerometer, compass, and camera), but those might not be
necessary in a beginning class. It would not be necessary to
provide a device to each student; either one per team, or just a
handful available for checkout would suffice, and perhaps provide
an accidental lesson in scheduling algorithms.

2.2 Android
Unlike iOS, which is restricted to Mac OS X, Android can be
developed using any of the current major operating systems,
Windows (XP or higher), Mac OS X (10.5.8 or higher), and Linux
systems (running with kernel 2.6 or higher). This provides great
flexibility as almost any modern computer science laboratory
should be suitable: no specialized hardware is required.

Developers can create Android Virtual Devices (AVDs), each
AVD configured to represent a particular physical mobile device,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

607

that run on the Android Emulator [2]. As the name suggests,
AVDs allow for extensive testing without the need for an actual
phone. An AVD can be instantiated with many different screen
resolutions, SD card sizes, and SDK versions to fully test the
compatibility of their application over a wide range of Android
implementations. GPS readings and phone/SMS interrupt signals
can be passed to the emulator through a telnet connection, and
accelerometer, orientation and compass readings can be
manipulated using OpenIntent’s SensorSimulator [21].

As is the case with iOS, testing applications on actual devices is
invaluable. Two different development phones can be purchased
from Google through an Android Market account, the Nexus One
at $529 running SDK 2.2, and Developer Phone 2 at $399 running
SDK 1.6. For educational grants, Google also recommends
contacting individual hardware manufacturers such as HTC,
Motorola and Samsung.

3. SDK
3.1 iOS
iOS apps are written using Xcode, a modern IDE used to code,
debug, and lay out the interface. Students familiar with Eclipse,
NetBeans or Visual Studio will feel right at home.

For more sophisticated debugging, a separate application called
Instruments can be used to detect memory leaks, profile where the
app spends most of its time, and ascertain how it utilizes system
resources. Both Xcode and Instruments require the hardware
described in section 2.1.

Xcode projects can be targeted specifically for iPhones or iPads
(the interface is sized appropriately), or written to be universal,
running on the iPhone in full-size or on the iPad at a user-
selectable resolution.

The iOS SDK is not new. Its origins can be traced to NeXT OS,
and while it continues to evolve at a rapid pace to accommodate
mobile devices, it has been in widespread use on Mac OS X for
over 10 years [11]. This shows in the iOS frameworks,
collectively known as Cocoa Touch, which are meticulously
designed, exhaustively tested, and thoroughly documented. They
provide an excellent example for students to emulate.

Cocoa Touch incorporates numerous unusual, if not unique,
design patterns that by themselves are worth studying [5]. For
example:

• Interface elements, created visually using a graphical
editor, are stored in .xib files, then graphically
connected to code via outlets.

• Object allocation and initialization take place in distinct
steps, which reduces the number of initialization
methods (equivalent to Java constructors) that must be
defined.

• Instead of subclassing, distinctive behavior is achieved
by equipping classes with delegates. Delegates are
simply references to objects that implement a particular
protocol, and consulted whenever an object needs to
respond.

• Blocks (equivalent to lambda expressions and closures
in other languages), while not unique to iOS 4, are

ubiquitous in the SDK, and provide an even simpler
alternative to delegation

iOS applications are most commonly written using Objective-C, a
superset of ANSI-C that borrows its OO syntax from SmallTalk.
Cocoa Touch provides a rich set of collections, so it is possible to
do most coding without having to dwell on the arcana of pointers.
However, students must deal with memory management
themselves — for performance reasons garbage collection is not
available — a bonus for those who spend most of their time in
Java or C#.

Perhaps one of the most fundamental design patterns is the
separation of interface and implementation, and this is embedded
into all iOS apps. In the language itself, an Objective-C class is
defined in two files. The interface, in a .h file, contains instance
variables, method signatures and properties (simplifying the
writing of accessors and mutators). The implementation, in a .m
file, contains method bodies. In an Xcode project, the interface is
specified in a .xib file, and the implementation in an Objective-C
class.

3.2 Android
Android OS is considerably newer than iOS. It has been under
rapid development, moving from version 1.0, released in May
2007, to version 2.2, released in May 2010. A majority of Android
devices now use 2.1 or above, although a significant portion of
devices remain at 1.5 or 1.6 due to hardware limitations [3]. In
classroom settings, this fragmentation can either be ignored, with
students standardizing on one screen size and OS version, or
exploited, to create tangible real-life testing scenarios of cross-
platform development.

Eclipse is the recommended and most popular development
environment for Android. With the use of the Android SDK
plugin, developers can employ this powerful IDE to create
projects and skeleton code, push apps to the emulator, and sign
apps for release in the Android Market. Although it is possible to
develop for Android outside of Eclipse, the benefits of having
quick access to the SDK, easy deployment to the emulator or
phone, and an integrated debugging environment make it an
obvious choice.

The GUI layout for an Android app consists of XML files which
include Layout and View elements. Views can be placed
hierarchically inside Layouts to create the GUI functionality in
either a relative or absolute mode. Eclipse includes a simple
WYSIWYG editor for creating views and editing their properties,
as well as exposing the underlying XML for manual alterations to
the code. Another alternative for layout creation is DroidDraw [6],
a platform independent application that can export XML for use in
Android projects.

The controller and model functionality of an Android app are
written in Java, using a subset of the Java 6 SE API, where the
swing, awt, and applet classes have been replaced with custom
libraries for graphics and mobile development. Instead of running
on a Java Virtual Machine, Google developed its own virtual
machine environment for mobile devices called Dalvik. Projects
are compiled to run on a Dalvik VM, with each application
running inside its own VM on the device. Unless they have had
experience with the Java GUI framework, students familiar with
Java from a CS1 and CS2 sequence will not notice a difference
between standard Java and the subset available in Android. They

608

do not require prior GUI programming exposure. Mapping
functionality can be added by including a separate SDK and
obtaining an API key for Google Maps.

There are two other main avenues for developing for Android.
Scripting Language for Android (SL4A) provides quick access to
the API through Python, Perl, JRuby, among others. Apps using
SL4A can be written directly on the phone and used immediately
without the need for compiling and exporting an apk (Android
package). And at the time of writing this article, Google is beta
testing App Inventor for Android, where apps can be written using
a graphical language based on LogoBlocks, the same language
that underlies Scratch and StartLogo TNG. While these
significantly lower the entry barrier for development and would
be suitable for introductory CS1 courses, upper-level courses
specifically geared to application development and mobile
operating systems will want to use the full SDK.

4. INSTRUCTOR RESOURCES
4.1 iOS
There are no textbooks on iOS per se, but the number of books
geared to professionals is growing, and some could be adopted for
classroom use [8, 16, 25]. Apple's technical documentation is
vast, precise, comprehensive, and free, and much of it could be
used to supplement the textbooks (or serve as the main reference
for recent changes in the SDK). A plethora of video tutorials are
also available, and some universities are putting entire courses
online [4, 28].

While the iOS SDK is free to all developers, it only allows testing
on the simulator: however universities can join Apple's free
iPhone Developer University Program, which among other
benefits permits the installation of the iOS SDK on lab machines,
and uploading of apps to iFamily devices.

4.2 Android
As with iOS, there are no explicit textbooks for Android
development, however many professional introductory texts can
easily be used in the classroom [17, 18]. The official tutorials,
development guide, and API reference include numerous basic
code examples and complete Eclipse projects, and many tricky
coding questions are answered in the StackOverflow forums [20,
27]. In addition, a number of courses on Android have been
offered with the course materials publicly shared [1, 9, 19].

5. HELLO WORLD EXAMPLE
To compare the two platforms, we narrate the development of a
small "Hello, world!" style app called HelloPermute: each time a
button is clicked, the characters of the phrase "Hello, world!" will
be displayed in a different order.
Readers interested in seeing the creation of HelloPermute in its
entirety may wish to view the videos of the process [24].

5.1 iOS
5.1.1 Creating the Project
When creating a new project in Xcode, the user is offered multiple
templates. In this case, we choose one of the simplest, a View-
based application, targeted for the iPhone. The template provides:
• a single view, stored in a .xib file, on which we graphically

lay out the interface elements of the project;

• a view controller, stored as code in a .h (header) and .m
(implementation) file, which plays its customary role as an
intermediary between the view and model; and

• a .plist (property list) file, in which we define the app's name,
and icon, and other items.

The template does not provide a model. It is simple to add one,
but in the interests of brevity, and because our model is almost
trivial, we will merely incorporate it into the view controller.

5.1.2 Creating the Interface
Double-clicking the .xib file reveals a window consisting of 3
components — a View, which will display our interface elements;
the File's Owner, which represents the view controller; and the
First Responder, which references the UI element that first
receives an event.

Figure 1: Components of a .xib file

To create our GUI, we drag a UITextField and UIButton from a
library console onto the View, center them, and configure them
(selecting the font, background, text, etc.).

Figure 2: Creating and configuring a GUI

5.1.3 Writing the View Controller
In the view controller class, we must define a method for the
UIButton to execute (its action), and an instance variable (an
outlet) so that we can reference the UITextField. Figure 3 shows
the interface, HelloPermuteVC.h:

Figure 3: The interface of HelloPermuteVC

The syntax may appear daunting at first blush, but it takes just a
few minutes in the classroom to explain to students familiar with

609

OO-ideation. Briefly, the class is called HelloPermuteVC, and it
extends the Cocoa Touch class UIViewController. The entire
interface is enclosed in an @interface … @end block (@ prefaces
Objective-C keywords). The interface is divided into two parts:
instance variables are defined in curly brackets, and method
signatures follow. The instance variable, phraseTF, is a pointer to
a UITextField. It is adorned with IBOutlet (an empty macro),
which makes phraseTF visible when connecting it to the
UITextField object placed earlier.

The method permuteWord, is an instance method, as indicated by
the leading - sign. It returns void (IBAction is a macro defined
as void). It has one parameter, called sender, of type id (a generic
type that can store any reference variable).
Figure 4 shows the body of permuteWord, defined in the
corresponding .m file, is as follows:

Figure 4: The body of permuteWord, in HelloPermuteVC.m

permuteWord demonstrates the use of categories, a powerful
feature of Objective-C that makes it possible to add functionality
to classes without resorting to subclassing. NSMutableString, as
supplied by Apple, does not include swapChars:at:and:. The
author added it as a category method, and can consequently be
invoked like any other "native" NSMutableString method. The
actual code is trivial and therefore not shown here.

5.1.4 Completing the Interface
With the controller class finished, the last steps are to bridge the
gap between the code and the user interface, specifically, to
associate the method permuteWord: with the UIButton, and the
variable phraseTF with the UITextField on the view. Both are
done graphically. The line labeled 1 in Figure 5 shows the first
step: dragging from the UIButton to the File's Owner causes a
small pop-up menu to appear, with permuteWord visible.
Choosing permuteWord completes the connection.
[permuteWord appears because its return type was an IBAction:
had we merely labeled it as void, we would not see it].

Figure 5: Connecting actions and outlets

The second step, depicted by the line labeled 2 in Figure 5, is
almost the same, except dragging occurs in the opposite direction,
from the File's Owner to the UITextField.
It is difficult to convey just how quickly and intuitively one can
wire together an application using the techniques described above
[24], and most developers embrace it. However, there are times
when it is necessary to create a user interface dynamically, and
some developers feel more comfortable when they are "in
control", so to speak. For those situations and persons, it is
possible to eschew .xib files and develop the entire interface in
code.

5.2 Android
An Android project has three main elements: the Manifest file
detailing its internal organization, resources, such as images and
files, and the main Activity and associated class files. The
directory hierarchy and a basic template for all three elements are
created when a new project is begun in Eclipse.

5.2.1 Project Manifest
The AndroidManifest.xml file, akin to the iOS .plist, stores an
overall summary of the app, including the name, version, and
minimum SDK necessary to run the app. This is created upon
initialization of a new Android project within Eclipse. Resources
in other files are accessed with @ notation, such as
@drawable/icon. Within this file a developer would also place
tags for requesting permissions such as Internet Access, GPS
location or Vibrate functionality, and a link to any associated
background services. This file can be altered graphically within
Eclipse as well as through changing the underlying XML.
<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="edu.sample.hellopermute"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"

 android:label="@string/app_name">
 <activity android:name=".HelloPermute"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="1" />
</manifest>

5.2.2 XML Resources
Standard resources for an Android project include drawables such
as any necessary images and the application icon (png format
preferred for transparency), GUI layout, and a strings file
commonly used for allowing language independence. Shown first
is the /res/values/strings.xml, which names the app_name, hello
and button strings.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">HelloWorld!</string>
 <string name="app_name">HelloPermute</string>
 <string name="button">Permute</string>
</resources>

610

The GUI layout is stored in in /res/layout/main.xml. The outer
container for the whole application is a RelativeLayout, and
placed inside are a centered TextView for displaying the current
jumble of “HelloWorld!”, centered horizontally, and a Button
relatively below the TextView labeled “Permute”.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 android:id="@+id/RelativeLayout01"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 xmlns:android=
 "http://schemas.android.com/apk/res/android">
 <TextView
 android:id="@+id/TextView01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="30sp"
 android:padding="10sp"
 android:layout_centerHorizontal="true"
 android:text="@string/hello"></TextView>
 <Button
 android:layout_below="@+id/TextView01"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:id="@+id/Button01"
 android:layout_centerHorizontal="true"
 android:text="@string/button"></Button>
</RelativeLayout>

5.2.3 Activity
The HelloPermute Activity file is saved in the source directory as
src/edu/sample/hellopermute/HelloPermute.java. The onCreate
method takes the place of the usual constructor for an Activity,
first initializing the Activity with a call to the super constructor,
then inflating the layout from res/layout/main.xml, and finally
binding the data member phrase to the TextView and b to the
Button. Unlike iOS’s graphical wiring, connections between the
GUI view and functionality are linked programmatically. In more
complicated applications, an anonymous class is used for the
Button’s OnClickListener callback detailing the method to be
executed. However, since there is only one Button in
HelloPermute, we simply implement the onClick method from
OnClickListener as part of the Activity, where it grabs the text,
shuffles the characters and returns the jumbled String to the
TextView. A demonstration of the application running on the
Android emulator is shown in Figure 6.

package edu.sample.hellopermute;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class HelloPermute
 extends Activity implements OnClickListener {

 private TextView phrase;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 phrase = (TextView)
 findViewById(R.id.TextView01);
 Button b = (Button)
 findViewById(R.id.Button01);
 b.setOnClickListener(this);
 }

 @Override
 public void onClick(View arg0) {
 StringBuffer sb = new
 StringBuffer(phrase.getText());
 for (int i=0; i < sb.length()-1; i++) {
 int where = (int)(Math.random() *
 (sb.length() - i));
 char temp = sb.charAt(i + where);
 sb.setCharAt(i + where,
 sb.charAt(i));
 sb.setCharAt(i, temp);
 }
 phrase.setText(sb);
 }
}

Figure 6: Hello Permute screenshot in Android emulator

6. CONCLUSIONS
Our comparison is summarized in Table 1. Both iOS and Android
have their advantages. iOS development requires a specific type
of hardware that may be more difficult to obtain — but that might
encourage cross-departmental collaboration and expose students
to another operating system. The bar for Android is somewhat
lower, as development can take place in any modestly equipped
computer science laboratory.
Students are much more likely to have seen the combination of
Java and Eclipse than Objective-C and Xcode. Again, there is an
advantage to exposing students to a relatively novel language and
development environment, and a price to pay. Having to confront
memory management issues is not necessarily a bad thing, nor is
having to work with blocks. But there can be no denying that
students studying Android will likely know Java; students
studying iOS will very likely not know Objective-C. There is,
therefore, a modest upfront cost to choosing iOS.
There is easily enough material to devote an entire course to a
single environment. However, if curricular constraints make
such a course impractical, either could serve well as an intriguing
modular programming assignment in an upper-level course. Both
are capable of 2D and 3D graphics with OpenGL and database
management with SQLite. Students could see practical examples
of embedded operating systems and learn to cope with threading,
synchronization and locking.
Computing on mobile devices is mushrooming, and regardless of
platform choice, a course on the subject will likely be
oversubscribed. Either iOS or Android will enable faculty to
present the key ideas of mobile computing; strengthen student

611

programming skills that will serve them in good stead regardless
of what platform they end up writing on; and make for an exciting
classroom experience.

Table 1. Comparison of iOS and Android across multiple
dimensions

 iOS Android
Minumum

Development
Operating System

Requirements

Mac OS X 10.6
Windows XP

Linux
Mac OS X 10.5.8

Development
Device

$99 iPhone 3G
$199 iPod Touch
$199 iPhone 4
$499 iPad

$399 Dev Phone 2
 (v1.6)
$529 Nexus One
 (v2.2)

IDE Xcode Eclipse 3.5

GUI Creation Xcode XML

Language Objective-C

Java (Dalvik)
Scripting (SL4A)

LogoBlocks
(AppInventor)

Reference
Website

http://developer.
apple.com/iphone

http://developer.
android.com/

7. ACKNOWLEDGMENTS
Our thanks to various colleagues at our respective institutions and
the SIGCSE reviewers for their support and careful reading of this
paper.

8. REFERENCES
[1] Abelson, H. Building Mobile Applications with Android.

2008. Retrieved from http://people.csail.mit.edu/hal/mobile-
apps-spring-08/

[2] Android Developers. Retrieved
from http://developer.android.com/guide/developing/tools/e
mulator.html

[3] Android Developers. Retrieved from
http://developer.android.com/resources/dashboard/platform-
versions.html

[4] Benson, E. Introduction to iPhone Application Development.
2010. Retrieved from http://courses.csail.mit.edu/iphonedev/

[5] Buck, E. 2010. Cocoa Design Patterns. Addison-Wesley.
[6] Burns, B. droiddraw. Retrieved

from http://www.droiddraw.org/
[7] Digital Media Test Kitchen. 2010. Smartphone Survey

Questions & Results. Retrieved
from http://testkitchen.colorado.edu/projects/reports/smartph
one/smartphone-appendix1/#q1b

[8] Dudney, B. 2010. iPhone SDK Development. Pragmatic
Programmers.

[9] Google Code University. 2010. Retrieved from
http://code.google.com/edu/android/index.html

[10] Grissom, S. 2008. iPhone Application Development Across
the Curriculum, The Journal of Computing Sciences in
Colleges, 24, 1 (Oct. 2008) 40-46.

[11] History of Mac OS X. In Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/History_of_Mac_OS_X

[12] Kurkovsky, S. 2009. Engaging students through mobile game
development. SIGCSE Bulletin 41, 1 (Mar. 2009), 44-48.
DOI= http://doi.acm.org/10.1145/1539024.1508881

[13] Mahmoud, Q. H. and Dyer, A. 2007. Integrating BlackBerry
wireless devices into computer programming and literacy
courses. In Proceedings of the 45th Annual Southeast
Regional Conference (Winston-Salem, North Carolina,
March 23 - 24, 2007). ACM-SE 45. ACM, New York, NY,
495-500. DOI= http://doi.acm.org/10.1145/1233341.1233430

[14] Mahmoud, Q. H. and Dyer, A. 2008. Mobile Devices in an
Introductory Programming Course. Computer 41, 6 (Jun.
2008), 108-107.
DOI=http://dx.doi.org/10.1109/MC.2008.200

[15] Mahmoud, Q. H., Ngo, T., Niazi, R., Popowicz, P.,
Sydoryshyn, R., Wilks, M., and Dietz, D. 2009. An academic
kit for integrating mobile devices into the CS curriculum. In
Proceedings of the 14th Annual ACM ITiCSE (Paris, France,
July 06 - 09, 2009). ACM, New York, NY, 40-44. DOI=
http://doi.acm.org/10.1145/1562877.1562896

[16] Mark, D. 2010. Beginning iPhone 3 Development. Apress.
[17] Meier, R. 2010. Professional Android 2 Application

Development. Wrox Press.
[18] Murphy, M. 2010. Beginning Android 2. Apress.
[19] Nieh, J. Mobile Computing with iPhone and Android.

Retrieved from
http://www.cs.columbia.edu/~nieh/teaching/e6998/

[20] Nurik, R. 2010. Hello, Stack Overflow! Retrieved from
http://android-developers.blogspot.com/2009/12/hello-stack-
overflow.html

[21] Openintents. Retrieved from
http://code.google.com/p/openintents/wiki/SensorSimulator

[22] Rogers, M. P. 2009. It's for you!: an iPhone development
primer for the busy college professor. The Journal of
Computing Sciences in Colleges, 25, 1 (Oct. 2009), 94-101.

[23] Rogers, M. P. 2010. Wrong number: avoiding the hidden
perils in iPhone development. The Journal of Computing
Sciences in Colleges, 25, 5 (May. 2010), 300-305.

[24] Rogers, M. P. iPhone App Demo [Video file]. Retrieved
from http://www.youtube.com/watch?v=spOQJ1DRl88

[25] Sadun, E. 2010. iPhone Development Cookbook. Addison-
Wesley.

[26] Spertus, E., Chang, M. L., Gestwicki, P., and Wolber, D.
2010. Novel approaches to CS 0 with app inventor for
android. In Proceedings of the 41st ACM SIGCSE
(Milwaukee, Wisconsin, USA, March 10 - 13, 2010). ACM,
New York, NY, 325-326. DOI=
http://doi.acm.org/10.1145/1734263.1734373

[27] Stackoverflow. Tagged Questions. 2010. Retrieved from
http://stackoverflow.com/questions/tagged/android

[28] Stanford University. 2010. CS 193P iPhone Application
Development. Retrieved
from http://www.stanford.edu/class/cs193p/cgi-
bin/drupal/downloads-2010-winter

612

